Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Transl Med ; 10(6): e200, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-840542

ABSTRACT

BACKGROUND: COVID-19 is currently a global pandemic, but the response of human immune system to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains unclear. Noncoding RNAs serve as immune regulators and thus may play a critical role in disease progression. METHODS: We performed multi-transcriptome sequencing of both noncoding RNAs and mRNAs isolated from the red blood cell depleted whole blood of moderate and severe COVID-19 patients. The functions of noncoding RNAs were validated by analyses of the expression of downstream mRNAs. We further utilized the single-cell RNA-seq data of COVID-19 patients from Wilk et al. and Chua et al. to characterize noncoding RNA functions in different cell types. RESULTS: We defined four types of microRNAs with different expression tendencies that could serve as biomarkers for COVID-19 progress. We also identified miR-146a-5p, miR-21-5p, miR-142-3p, and miR-15b-5p as potential contributors to the disease pathogenesis, possibly serving as biomarkers of severe COVID-19 and as candidate therapeutic targets. In addition, the transcriptome profiles consistently suggested hyperactivation of the immune response, loss of T-cell function, and immune dysregulation in severe patients. CONCLUSIONS: Collectively, these findings provide a comprehensive view of the noncoding and coding transcriptional landscape of peripheral immune cells during COVID-19, furthering our understanding and offering novel insights into COVID-19 pathogenesis.

2.
Protein Cell ; 11(10): 740-770, 2020 10.
Article in English | MEDLINE | ID: covidwho-709445

ABSTRACT

Age-associated changes in immune cells have been linked to an increased risk for infection. However, a global and detailed characterization of the changes that human circulating immune cells undergo with age is lacking. Here, we combined scRNA-seq, mass cytometry and scATAC-seq to compare immune cell types in peripheral blood collected from young and old subjects and patients with COVID-19. We found that the immune cell landscape was reprogrammed with age and was characterized by T cell polarization from naive and memory cells to effector, cytotoxic, exhausted and regulatory cells, along with increased late natural killer cells, age-associated B cells, inflammatory monocytes and age-associated dendritic cells. In addition, the expression of genes, which were implicated in coronavirus susceptibility, was upregulated in a cell subtype-specific manner with age. Notably, COVID-19 promoted age-induced immune cell polarization and gene expression related to inflammation and cellular senescence. Therefore, these findings suggest that a dysregulated immune system and increased gene expression associated with SARS-CoV-2 susceptibility may at least partially account for COVID-19 vulnerability in the elderly.


Subject(s)
Aging/immunology , Betacoronavirus , Coronavirus Infections/immunology , Immune System/immunology , Pandemics , Pneumonia, Viral/immunology , Single-Cell Analysis , Adult , Aged , Aged, 80 and over , Aging/genetics , CD4-Positive T-Lymphocytes/metabolism , COVID-19 , Cell Lineage , Chromatin Assembly and Disassembly , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/biosynthesis , Cytokines/genetics , Disease Susceptibility , Flow Cytometry/methods , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Rearrangement , Humans , Immune System/cytology , Immune System/growth & development , Immunocompetence/genetics , Inflammation/genetics , Inflammation/immunology , Mass Spectrometry/methods , Middle Aged , SARS-CoV-2 , Sequence Analysis, RNA , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL